Day 22

Describing R2 in context: All Student Bistro sells plain pizzas for \$8 and adding \$1.50 per topping.

Create a scatterplot graphing cost of pizza against the number of toppings. Describe the association:

The correlation, $r = _$ so $R^2 = _$

Now label the following statements as true or false.

- a) The number of toppings explains 100% of the cost of a pizza.
- b) Differences in the number of toppings explains 100% of the variation in the cost of pizzas.

Review A 21 (on OH)

We should always use meaningful variable names (in lieu of x and y) when writing regression lines. $fat = 8.7 + 0.61 \square protein$

IPS Website: Correlation and Regression

A high R^2	Does not demonstrate the appropriateness of the regression.
So how do we check appropriateness?	

3 conditions needed for Linear	1. Quantitative Variables
Regression Models:	2. Straight Enough – check original scatterplot & residual scatterplot
/* same as correlation */	3. Outlier (clusters) -points with large residuals and/or high leverage

But sometimes it is difficult to determine form or other problems with a scatterplot. Fortunately not only does our line of best fit provide a convenient model for the association it also provides an excellent method for checking its appropriateness.

IPS Website: Two-variable Statistical Calculator

Looking at a	a scatterplot of the residuals vs. the x-values.
is a good way to check the	
Straight Enough Condition.	(appropriateness) If we extract all the form, Then
It should be	boring: uniform scatter with no direction, shape, or outliers.
The is the key to assessing	variation in the residuals
how well the model fits.	
Standard deviation of the	Gives a measure of how much the points spread around the
residuals, <i>s</i> _e	regression line.
$1 - R^2$	The fraction of the original variation left in the residuals.
	(The percentage of variability not explained by the regression line.)
Extrapolations	Dubious predictions of y-values based on x-values outside the range
	of the original data.

Let's use the calculator: Equation for Line of Best Fit, Draw Line, Residual Plots.

Fortunately we already know how to calculate the equation of the regression line, and R². It is done for us when we calculated correlation back on Day 19. However if we want to graph the regression line and make residual plots we have need some modification and additional steps (in **bold** below).

